Standing Waves for Quasilinear Schrödinger Equations with Indefinite Nonlinearity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbital stability of standing waves for semilinear wave equations with indefinite energy

Article history: Received 25 October 2007 Available online 29 March 2008 Submitted by P.J. McKenna

متن کامل

Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves

For N ≥ 3 and p > 1, we consider the nonlinear Schrödinger equation i∂tw +∆xw + V (x) |w|p−1 w = 0 where w = w(t, x) : R× R → C with a potential V that decays at infinity like |x|−b for some b ∈ (0, 2). A standing wave is a solution of the form w(t, x) = eu(x) where λ > 0 and u : R → R. For 1 < p < 1 + (4− 2b)/(N − 2), we establish the existence of a C1-branch of standing waves parametrized by ...

متن کامل

Standing waves for nonlinear Schrödinger equations with singular potentials

We study semiclassical states of nonlinear Schrödinger equations with anisotropic type potentials which may exhibit a combination of vanishing and singularity while allowing decays and unboundedness at infinity. We give existence of spike type standing waves concentrating at the singularities of the potentials. © 2008 Elsevier Masson SAS. All rights reserved. Résumé Nous étudions les états semi...

متن کامل

Existence of Solutions for Quasilinear Elliptic Equations with Nonlinear Boundary Conditions and Indefinite Weight

In this article, we establish the existence and non-existence of solutions for quasilinear equations with nonlinear boundary conditions and indefinite weight. Our proofs are based on variational methods and their geometrical features. In addition, we prove that all the weak solutions are in C1,β(Ω) for some β ∈ (0, 1).

متن کامل

Localized standing waves in inhomogeneous Schrödinger equations

A nonlinear Schrödinger equation arising from light propagation down an inhomogeneous medium is considered. The inhomogeneity is reflected through a non-uniform coefficient of the non-linear term in the equation. In particular, a combination of self-focusing and self-defocusing nonlinearity, with the self-defocusing region localized in a finite interval, is investigated. Using numerical computa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Physics

سال: 2021

ISSN: 2327-4352,2327-4379

DOI: 10.4236/jamp.2021.95069